
Combinational hazards

 We break down combinational hazards into two
major categories, logic hazards and function
hazards.

 A logic hazard is characterized by the fact that
it can be eliminated by proper combinational logic
design methods.

 Function hazards come with the function being
implemented and cannot be dealt with by basic
combinational design techniques.

Logic hazards

 Suppose that input variable changes are spaced
such that the effects of a change in one variable
is permitted to propagate throughout the circuit
before another variable is allowed to change.

 This is the single-input change case, since input
signal patterns can change in only one variable at a
time. For example, 00 can be followed by 01 or 10,
but not 11.

 A single-input change static hazard (SICS hazard)
is a momentary change in an output that occurs as
the result of the change of a single input variable
when the value of the output variable is to remain
fixed.

Single-input change static hazard (SICS hazard)

Example of a Static Hazard in a Multiplexer

Karnaugh Map of Multiplexer

 D0 = D1 = 1 the hazard is in the
third column of the map and
actually occurs when S goes from
1 to 0

 The hazard occurs as the circuit
goes from minterm D0D1S to
minterm D0D1S

 Combining these two minterms:

D0D1S + D0D1S = D0D1

 The addition of this new term
prevents the hazard

 All of the prime implicants have
been used

1

1

1

1

D0

10 2

4

3

5 67

D0 D1
S

D1

Sum-of-products and static 1-hazards

 In general, for a sum-of-products implementation,
the potential for a SICS hazard exists wherever
there are two adjacent 1’s in the Karnaugh map
that are not included within a product term of the
implementation.

 To remove all potential for static 1-hazards from a
sum-of-products implementation of F, all prime
implicants of F must be included in the circuit
implementation.

 A sum-of-products implementation is automatically
free of static 0-hazards.

Products-of-sum and static 0-hazards

 For a product-of-sums implementation of function F,
all of the prime implicates of F must be included
to remove all potential for static 0-hazards.

 A product-of-sums implementation is
automatically free of static 1-hazards.

 Finally, any sum-of-products or product-of-sums
implementation free of static 1-hazards and static
0-hazards is free of dynamic hazards.

Sum-of-products and static 1-hazards

 The normal minimum solution for F is represented by the prime
implicants in green.

 There are three other prime implicants available. The two A D and
B C, are present to deal with single-input change static hazards.

 The blue, B D, is present to deal with a multiple input- change
static hazard (MICS hazard)

1 1

1

1

1 1

B

D

A

1 1

1 1 1

C
CD

AB

BD

BC

AD

Function hazard

 If multiple variable values can change before that the
effect of the first change has not propagated
throughout the circuit the elimination of static hazards
is not sufficient to guarantee correct operation.

 For example, consider the change from 0011 to 0000 if
C changes before D, the combination 0001 will
momentarily appear generating a 0-hazard.

 This is not a logic hazard, since there is no way avoid it
by changing the implementation logic !

 Since this hazard is built into the function F regardless
of implementation, it is called a function hazard.

 The only way to control it is changing relative path
delays in the circuit.

Finding Function Hazards

 1-function hazards occur between (0,1,1) and (1,0,1) and between
(1,1,1) and (0,1,0).

 0-function hazards occur between (0,0,1) and (1,0,0) and between
(1,1,0) and (0,0,0).

 Suppose that D0, D1 and S can change one, two or three at a
time, it is tedious, if not impossible, to manipulate the circuit
delays in the multiplexer to avoid all of these function hazards
including those involving three variable changes.

1

1

1

1

D0

10 2

4

3

5 67

D0 D1
S

D1

11/29

Modern chip design aspects

 Modern chips became too complex

 The number of transistors in a modern chip is over
a 100 M

 Transistor count per chip and chip speed rise up to
50% per year

 Estimated time needed for manual implementation

(100 M transistor, 10 sec/transistor) – 135.5
years!!!

12/29

VHDL

 VHDL - VHSIC Hardware Description Language

 VHSIC - Very High Speed Integrated Circuit

 Development of VHDL began in 1983, sponsored by
Department of defense, further developed by the IEEE and
released as IEEE Standard 1076 in 1987

 Today it is De facto industry standard for hardware
description languages

The abstraction hierarchy

 The abstraction hierarchy can be expressed in two
domains: structural domain, behavioral domain

 Structural domain – component model is described in
terms of an interconnection of more primitive
components

 Behavioral domain – component model is described by
defining its input/output response

 VHDL is used for both structural and behavioral
description

 Six abstraction hierarchy levels of detail commonly used
in design: silicon, circuit, gate, register, chip and system

14/29

Design process

 The design cycle consists of a series of transformations,

synthesis steps:
• Transformation from English to an algorithmic representation,

natural language synthesis

• Translation from an algorithmic representation to a data flow
representation,

algorithmic synthesis

• Translation from data flow representation to a structural logic
gate representation,

logic synthesis

• Translation from logic gate to layout and circuit
representation,

layout synthesis

15/29

Design tools

 Editors – textual (circuit level – SPICE gate, register, chip
– VHDL) or graphic (used at all levels)

 Simulators – stochastic (system level) or deterministic (all
levels above the silicon level)

 Checkers and Analyzers – employed at all levels, used for
example
• to insure that the circuit layout can be fabricated reliably (rule

checkers),

• to check for the longest path through a logic circuit or system
(timing analyzers)

 Synthesizers and Optimizers – improving a form of the
design representation

